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Abstract. We present a study of a model proposed by Sluckin to represent molecular 
monolayers adsorbed on a surface. Monte Carlo simulations and a Muller-Hartmann- 
Zittartz interface free energy calculation reveal that the region of stability of the low- 
temperature herringbone phase of this system is much less extensive than was originally 
thought. The analysis indicates that the model exhibits a very rich phase diagram, which 
merits further investigation. 

1. Introduction 

In this paper we investigate the phase diagram of an orientationally dependent Potts- 
type model, recently introduced by Sluckin [ 11 to describe the ‘herringbone phase’, 
which is observed experimentally in nitrogen adsorbed on graphite [2,3] . In this 
two-dimensional (monolayer) phase the molecules form a triangular lattice in registry 
with the substrate, and preferentially align along the crystal axes. The particular 
arrangement known as the herringbone phase is shown in figure 1, labelled ‘HB’. This 
phase is also observed in many other systems, such as hydrogen at low temperatures 
[4] and smectic-E liquid crystals [5,6], hence a general Hamiltonian which describes 
the common physical features of these structures would be very useful. We examine 
both numerically and analytically such a proposed Hamiltonian [l] to determine its 
physical applicability, and discover indications of a rich phase diagram. Its properties 
include multiphase points, various types of domain wall and wetting lines - all of 
which have received considerable attention in recent literature [7,8] and may warrant 
further study. 

The layout of this paper is as follows. Section 2 describes the model and summarises 
the results already obtained. Section 3 describes and reports the results from a Monte 
Carlo study performed on a distributed array processor (DAP). In §4 we present an 
analysis of the interfacial behaviour and use approximate techniques to locate the 
position of the phase boundaries. Finally, $5 contains a discussion and suggests future 
areas of study. 

2. The model 

The model is defined by the Hamiltonian [l] 

(1) 
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Figure 1. The ground-state configurations: ferromagnetic (F), E,, = J I  + 252; herringbone 
(HB), E,, = J 2 ;  antiferromagnetic (AF), E,, = 0; blanket-stitch (EIS), E,, = J 1 / 2 .  

where -= ij > denotes that the sum is to be taken over all pairs of nearest-neighbour 
sites i and j ,  located on a triangular lattice, si is a three-state spin which can have an 
alignment along one of the three lattice axes, and rij  labels the lattice axis to which the 
vector joining i and j belongs. As for the standard Potts model, only neighbouring spins 
which are in the same state have a non-zero energy; in the case studied here, however, 
the coupling of the spin directions to the lattice vectors introduces an asymmetry into 
the interaction parameters. Parallel spins aligned along the lattice vector joining them 
have an interaction energy of J , ,  whilst all other parallel spins interact with energy J,. 
This information is displayed diagramatically in figure 2. 

The ground state of the model for a particular choice of J ,  and J ,  may be found by 
minimising the total energy per spin, Eg,. Careful counting of all possible arrangements 
leads to four ground-state configurations: ferromagnetic (F), E,, = J ,  + 2 J , ;  herringbone 
(HB), E,, = J,; antiferromagnetic (AF), E,, = 0; blanket-stitch (BS), E,, = J , /2 .  These 
configurations are sketched in figure 1. The regions of stability of these phases are 
shown in figure 3. 

It is convenient to parametrise J ,  and J ,  as 

J ,  = J ( l  - a )  J ,  = -Ja (2) 

and to define a reduced temperature k , T / J  where k ,  is Boltzmann's constant. This 
paper focuses on the HB and F phases, which are of most obvious physical interest. 
This corresponds to J ,  > 0 and J ,  e 0, i.e. 0 I a I 1 and J > 0. This region is shaded 
in figure 3. At T = 0 the HB and F phases meet in a multiphase point at a = i. A 
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Figure 2. The arrangements of neighbouring spins which have a non-zero interaction 
energy. 

t 
Figure 3. Regions of stability for different ground states. The region under study here is 
shaded. 

second multiphase point divides HB and AF phases at U = 0. For sufficiently high T ,  at 
any a, the disordered phase will be stable; consequently, as the temperature is lowered, 
we expect to see a transition to one or other of the ordered phases. 

The phase diagram obtained by Sluckin [l] via mean-field theory is shown in figure 
4. Due to the neglect of fluctuations inherent in such a theory this should provide an 
upper limit for the boundaries. Sluckin also used a Muller-Hartmann-Zittartz (MHZ) 
method 191 for the interface free energy to find the position of the phase boundaries. 
We have recalculated his results, making some amendments, and compare with our 
own work using this method in &I, 
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Figure 4. The phase diagram from mean-field theory [l] (broken curve); as predicted by our 
analysis (full curve); and from our Monte Carlo simulations (shaded). We show transition 
points determined from sequences of runs at constant z (vertical bars) and at constant T 
(horizontal bars). The estimated error is represented by the length of the bar in each case. 
Inset: the region around a = 0.5. 

3. Monte Carlo simulations 

We carried out Monte Carlo simulations on a parallel processing computer, the DAP 
510. This consists of a 32 x 32 array of processors, operating in concert. Many of 
the technical details of Monte Carlo simulations performed on this machine have been 
published before [10,11], so we just give a brief summary here. 

Our system consisted of 4096 spins arranged in a 64 x 64 rhombus with periodic 
boundary conditions, on a triangular lattice (each spin having six nearest neighbours). 
The spins were treated as lying on four interpenetrating 32 x 32 sublattices; all the 
three-state spin values belonging to a given sublattice were stored in a single DAP 
'matrix' variable. The nearest-neighbour character of the interactions meant that the 
usual Monte Carlo updating scheme could be applied to all spins in a given sublattice 
simultaneously and independently ; herein lies the parallelism of the technique. 

The DAP is very efficient at manipulating logical variables and small integers, and at 
performing the shifting operations necessary to compute some of the nearest-neighbour 
interactions. Also, the two-dimensional periodic boundary conditions are built into 
the hardware. The program was written in a parallel extension of FORTRAN and ran 
at about 60 MC sweeps per second (1 sweep = 1 attempted flip per spin), i.e. nearly 
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0.25 x lo6 spin flips per second. 
We used a standard Metropolis Monte Carlo algorithm [12], attempting to ran- 

domly change the state of each spin for each sublattice in turn. Cooling sequences of 
runs with fixed parameter a were initiated from a random initial configuration, and 
continued thereafter at steadily decreasing temperatures, the final configuration for 
one run being used as the initial configuration for the next. Complementary heating 
sequences were initiated from completely ordered herringbone or ferromagnetic config- 
urations, for a < i and a > i respectively. Typical runs were of length 10 OOO sweeps, 
of which 3000 were discarded to allow time for equilibration. The temperatures k,T/J 
between successive runs typically differed by 0.02 units. In the most interesting region 
of the phase diagram, a 2: i, longer runs of 30 OOO sweeps (discarding 10 OOO) were 
employed, and the temperature incremented in units of 0.005. Some sequences in this 
region were undertaken at constant temperature, changing the a parameter in units of 
0.001, and using still longer runs of 60 OOO sweeps (discarding 20 OOO). In all, about 
1000 state points were simulated. This survey would have been very time-consuming 
on anything other than a supercomputer or special-purpose machine. 

We observed order-disorder phase transitions which were located by monitoring the 
appropriate herringbone and ferromagnetic order parameters, defined by summing the 
spins in the correct orientations for a given ground state, and maximising with respect 
to the various degenerate choices of ground state. On comparing heating and cooling 
sequences, some evidence of hysteresis was seen around the phase transition. However, 
for most values of z, the hysteresis extended only over a single step in temperature, and 
we consider that our runs are long enough, and sufficiently closely spaced, to locate 
the transition points quite accurately. Well defined jumps in the order parameter were 
seen in most cases. We have made no serious attempt to determine the order of the 
transition, and its dependence on the parameters, as yet. In the most difficult region, 
a = 0.50 k 0.01, where the transition temperature was quite low, (k,T/J -= 0.1) the 
system behaved in a sluggish manner, and values of the order parameter were less 
reproducible. Nonetheless, the transition temperatures could still be determined quite 
well, and good agreement was obtained between temperature sweeps at constant a 
and sweeps in a at constant temperature. The transition points determined from these 
simulations are shown in figure 4. The error bars are estimated from the extent of 
hysteresis seen in each case. In the inset we expand the interesting region around the 
T = 0 HB/F boundary, r = i. 

4. Interfacial analysis 

In this section we make a preliminary calculation of the position of the phase boundaries 
using the method of Muller-Hartmann and Zittartz [9] to estimate the interfacial free 
energy between two degenerate phases. At the phase boundary this free energy vanishes, 
hence a value for the critical temperature may be obtained. An interface is introduced 
into the system by a suitable choice of boundary conditions - altering the boundary 
conditions may give a different interface and associated free energy, even at zero 
temperature. Therefore we begin with an analysis of the interfaces which occur at 
T = 0, before calculating the free energy of those which are energetically favourable, 

4.1.  Interfuces ut zero temperature 

We consider a rhombic triangular lattice with fixed boundary conditions in the top 
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Figure 5. The geometry of the triangular lattice. The broken line shows an interface passing 
through the system. i labels diagonal columns as explained in 44.2 and n, is the height 
of the ith column. The double-headed arrows indicate that periodic boundary conditions 
apply. The top and bottom rows of spins are fixed in the appropriate orientations. 

and bottom rows and periodic boundary conditions in the other lattice directions, as 
shown in figure 5. 

In the F phase, .i < 3, which is threefold degenerate, there are six possible choices 
of boundary conditions giving rise to an interface in the system. However, only two are 
symmetrically distinct, and these are are shown in figure 6. The corresponding energies 
are (i) E ,  = (2a - 1 ) N J  and (ii) E,  = (2u - f ) N J ,  where N is the length of the interface 
in lattice spacings. The first of these is the more stable for all a, and therefore we use 
this set of boundary conditions in the next section. 

Figure 6. The two distinct interfaces in the F phase. Associated ground-state energies are: 
(i) Eo = ( 2 3 ~  - 1 ) N J  ; (ii) Eo = (2% - i ) N J .  N is the length of the interface in lattice 
spacings. 

In the HB phase, 0 < a < 4, the ground state is sixfold degenerate and there are 
many possible different interfaces. Figure 7 shows the interfaces which have the lowest 
energy for various ranges of a. 

For 0.4 e u < 0.5, the interface labelled (i) in figure 7 has the lowest energy, 
E ,  = (1 - 2 u ) N J .  Notice that this energy is unaffected by any vertical displacement of 
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Figure 7. The interfaces in the H B  phase which have the lowest energy Eo, in the following 
ranges of a :  ( i )  0.4 < a < 0.5, Eo = (1  - 2a)NJ ; (i i)  0 < a < 0.4, Eo = i a N J  ; (iii) 
0 < a < 0.4, Eo = f - m N J .  N is the length of the interface in lattice spacings. In case (iii), 
the circled spins can flip from / to \ at zero energy cost. 

that interface. 
For 0 < a < 0.4 there are two non-equivalent interfaces, (ii) and (iii), with the 

same lowest energy E ,  = i a N J .  Only alternate vertical translations of (ii) give this 
energy; translating upward by one lattice spacing (or equivalently reversing the phase 
of the upper herringbone structure) gives a higher energy E ,  = i(1 - r ) N J .  Entropic 
fluctuations of (ii) at non-zero temperatures will therefore be reduced compared with, 
say, those of (i). Interface (iii) is particularly interesting because it has a finite entropy 
at T = 0. The circled spins can flip from / to \ at zero energy cost giving an entropic 
contribution iNk,ln2 to the interface free energy, and therefore (iii) will always be 
preferred to (ii). 

For $ e a < 0.4, a type-(i) herringbone interface may occur in the system with 
suitable boundary conditions, although it will not be a minimum energy interface as 
shown above. However, for a < i, type-(iii) or type+) interfaces of total length 2N 
are energetically preferable to one type-(i) interface of length N .  Some consideration of 
figure 7 reveals that it is not possible for a type+) interface to transform into type-(iii) 
interfaces without producing an interface of length much larger than 2N. It may, 
however, split into two type-(ii) interfaces with an arbitrary even number of layers of a 
third phase intervening. This leads to the possibility of a wetting transition at non-zero 
temperature. 

We now use these conclusions to study the phase diagram for T > 0. 
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4.2.  Non-zero temperatures 

The free energy associated with an interface between two degenerate phases involves 
evaluating the partition function over all possible fluctuations of the interface and the 
surrounding bulk phases. This, in general, is not feasible and some approximation must 
be made. The approach we shall use here, due to Muller-Hartmann and Zittartz (MHZ) 
[9], divides the system into a series of columns and completely determines an arbitrary 
interface configuration by the single-valued height at which it passes through the set 
of columns, ( a i } .  Therefore all overhangs of the interface and bulk excitations are 
neglected; however, the sum over remaining configurations may be readily evaluated. 
We emphasise that this particularly simplistic model must not be taken as an accurate 
prediction but rather used in conjunction with MC results as an indication of interesting 
aspects of the phase diagram which warrant a more thorough investigation. 

Following the notation of [9], the interface free energy per column is given by 

1 
a = E o - k g T  lim -1nZ 

N - + x  N (3) 

where E ,  is the ground-state energy per column of the flat interface, N is the number 
of columns, 2 is the interface partition function 

Z = xexp(-AE{ni}/kBT) (4) 
{nt l  

and AE{ni) is the interface energy associated with configuration {a , }  compared with 
the reference system. For a triangular lattice we choose our columns to be directed 
along one of the diagonal lattice axes, as shown in figure 5. This is equivalent to the 
fluctuations included by Southern [13] for the king model, and which give agreement 
with exact results. It differs from the subset chosen by Sluckin [ l ] ;  however, it 
automatically includes all of his configurations and avoids problems (overlooked in his 
work) with applying periodic interfacial boundary conditions. It should also be noticed 
that his ‘step energy’ in the F region of (a - i ) J  is incorrect and should be aJ; we 
include his amended results in figure 8 for comparison. 

3 0.5 1 .o 
a 

Figure 8. The phase diagram from the corrected MHZ analysis of Sluckin [l] (broken curve), 
and from our MHz analysis (full curve). 
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In the F region, using the the first interface in figure 6 as our reference system, the 
value of A E { n i )  for an arbitrary interface configuration is given by 

N 

i= I 

The partition function for all such fluctuations, as defined by equation (4) may 
readily be evaluated as 

z =  (1  +eXp(-aJ/kBT))N 
1 - exp(-aJ/k,T) 

This leads to an expression for the total interface free energy: 

U = (2a - 1)J - kBT In ( 1 + eXp(-aJ/kBT)) 
1 - exp(-aJ/kBT) ‘ 

(7) 

Setting U = 0 determines the phase boundary. This is compared with the mean-field 
prediction and with our Monte Carlo results in figure 4. We compare with Sluckin’s 
analysis in figure 8. As anticipated, the inclusion of more fluctuations in our method 
moves the phase boundary to lower temperatures. Reasonable agreement with the MC 
results is apparent. 

In the HB phase, the expression for AE{ni} for a type-(i) interface (see figure 7) is 
also given by equation (5 ) .  Hence the interfacial tension is given by 

We have plotted the resulting phase boundary for 0.4 < a c 0.5 in figure 4, for 
comparison with mean-field and Monte Carlo results, and again compare with Sluckin’s 
analysis in figure 8. It is clear that the difference between theory and simulation grows 
significantly as a falls to 0.4. The discrepancy would continue to grow if the curve were 
extended to lower U, but as we have seen this would be incorrect even in principle, 
since a lower-energy ground-state interface appears for a < 0.4. 

For 0 c a < 0.4 the evaluation of the type-(iii) interface partition function is non- 
trivial because AE{ni) depends on the actual values of ni as well as their differences. 
However, all elementary excitations have an energy proportional to aJ ,  so the low- 
temperature interface free energy may be expected to take the form 

d = 4aJ - ik,Tln2 - kBTf (uJ/k,T) (9) 

where the first term is the T = 0 energy, the second is temperature multiplied by the 
ground-state entropy and the final term is due to fluctuations. The phase boundary 
will therefore have the form k,T/aJ = constant, which is consistent with the Monte 
Carlo results. 

Finally, we consider the possibility of a wetting transition for T > 0 in the vicinity 
of a = 4. A calculation of the surface tension of a herringbone type-(ii) interface using 
a MHZ method as above could be used to predict whether wetting would occur via the 
condition 

2a(type-(ii)) = a(type-(i)). 
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However, this is significantly more complicated than the above calculations because 
the step energy no longer depends solely on the step height. We return to this in the 
following section. 

5. Discussion 

In this paper, we have re-examined and extended the work of Sluckin on the stability 
of herringbone and ferromagnetic phases for this model, and have compared with 
computer simulation results. The incorporation of a larger set of fluctuations into 
the Muller-Hartmann-Zittartz treatment [9] slightly improves (i.e. lowers) the upper 
bounds on the transition temperatures in each case. For the ferromagnetic case the MHZ 
approach predicts the phase boundary quite well. However, away from the multiphase 
point at U = i, it greatly overestimates the range of stability of the herringbone phase. 

This failure of the MHZ method is not surprising. For some models which have 
only two degenerate low-temperature phases, such as the Ising model on square and 
triangular lattices [ 13,141 the method gives very good agreement with exact calculations. 
However, for two-state models in general it is not possible to judge in advance the 
probable accuracy of a calculation nor the optimal interface orientation, although Lin 
and Wu [15] have discussed conditions which should be met to obtain any degree of 
accuracy. For models with several degenerate ground states, as here, the restriction to 
a single-valued interface profile may cause the method to fail, because many phases 
which could appear at the interface are automatically excluded. Various multistate 
models have been studied by Selke and Yeomans [16] using a modified MHZ method 
which allows for non-boundary states to be adsorbed at the interface. Their results 
show that neglect of the adsorbed states will always lead to an overestimate of the 
phase transition temperature, and that if a wetting transition occurs then inclusion of 
the surface-adsorbed state is vital to obtaining even qualitatively correct results. 

We have examined the interface structures generated by our Monte Carlo simula- 
tions specifically to test this point. For the ferromagnetic interfaces of figure 6,  very 
little surface adsorption seems to occur, right up to the transition temperature, and this 
is consistent with the agreement obtained between the MHZ theory and the simulation 
results shown in figure 4. On the herringbone side, however, for 0.4 < ct < 0.5, we see 
significant adsorption of additional phases at the interface (type (i) in figure 7 ) .  This will 
invalidate the calculation of the interfacial tension, equation (8), and lead to inaccurate 
transition temperatures, as we see in figure 4. The extension of the theory to U < 0.4 
requires the explicit evaluation of column-to-column transfer matrices for type-(ii) and 
type-($ interfaces. However, the degeneracy of the interfaces with respect to lattice 
directions leads to infinite eigenvalues which cannot be sensibly removed. Therefore 
the MHZ method completely fails in these cases. An alternative approach for locating 
the phase boundaries would be the use of finite-size scaling [17], to extrapolate from 
exact small-system results to the thermodynamic limit. In practice, this is expensive in 
terms of computer time, for this model. 

Similar comments apply to the investigation of a possible wetting transition in the 
herringbone phase around U = $. Ideally we should allow for an intervening third 
phase of arbitrary thickness at a type+) interface (see figure 7 ) ,  and determine the 
lowest surface free energy as a function of the thickness. This would be non-trivial, 
and preliminary investigations are underway. The low entropic contributions in a 
type-(ii) interface means that we cannot prejudge whether a wetting transition occurs. 
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However, the vast overestimation of the phase transition temperatures by the M H Z  
method compared with the MC results, and our own observations of surface adsorption 
in MC simulations of the interface, suggest that this is a significant factor. 

Our results indicate that, for this discrete-state model, the herringbone phase is 
highly vulnerable to fluctuation effects, which ultimately produce the disordered phase. 
We may expect this to be even more the case for continuous spin models. In particular, 
it will be interesting to fully characterise the phase transition in the discrete case and 
compare with the anisotropic planar rotor model (see [18] and references therein), in 
which a fluctuation-induced first-order transition occurs. Also, the possibility exists 
of extending the simulation and analysis to include vacant sites and/or spin states 
representing vertically oriented molecules. This work is currently in progress. 
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